
Algorithmen für Einführung in die künstliche Intelli-
genz - WiSe 2023/2024
Nils Dambowy

January 26, 2024

Introduction

This document goes over the different algorithms used in the lecture
"Einführung in die künstliche Intelligenz"(Introduction to Artificial
Intelligence) taught by Dr. Kristian Kersting in the wintersemester
2023/2024 at Technische Universität Darmstadt.

Tree Search Strategies

In order to understand Tree Search strategies we first have to intro-
duce a few definitions.

Definition 1 (State space). A state space is a set of all possible states.
States describe a possible situation in our environment. It is implic-
itly defined by the initial state and the successor function.

Definition 2 (Transition/Action). A transition describes possible a
action to take betweeb one state or another. In this lecture we only
count direct transitions between two states(single actions).

Definition 3 (Costs). Often transitions aren’t alike and differ. We
express this by adding a ’cost’to each action. Often the goal in search
algorithms is to minimize the cost to reach the goal.

Definition 4 (Path). A path is a sequence of states connected by a
sequence of actions.

Definition 5 ((Optimal) solution). A solution is a path that lead from
the initial state to a goal state. An optimal solution is a solution with
minimal path cost.

We can now think of the states as nodes and of the actions as
edges connecting different states. The main idea of tree search al-
gorithms is to treat this state-space graph as a tree. However, this
raises the question in what we should expand the nodes or what ac-
tions should we perform next? In this lecture two categories of search
strategies are presented - uninformed and informed.

Definition 6 (Search strategy). A search strategy is defined by picking
the order of node expansion.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 2

Different search strategies are described/evaluated along the
following dimensions:

1. Completeness: Does it always find a solution if one exists?

2. Time Complexity: Number of node expansions.

3. Space Complexity: Maximum number of nodes in memory.

4. Optimality: Does it always find the optimal(least cost) solution?

Uninformed Tree Search strategies

A uninformed search strategy has no other information other than
the problem defintition.

Uniform-Cost Search

Definition 7 (Uniform-Cost Search). Each node is associated with a
fixed cost (nodes can have different costs) and they accumulate over
the path within the search. Uniform-Cost Search uses the lowesrt
cumulative cost to find a path. Breadth-First search is a special case
of uniform-cost search where all costs are equal. It starts at the tree
root and explores the tree level by level.

1. Completeness: Yes, if each step has a positive cost, otherwise
infinite loops are possible. Hence BFS, is also complete.

2. Time Complexity: O(bd) for BFS and O(b1+⌊OptCost
Eps ⌋

) for UCS,
where OptCost = cost of optimal solution, every actions costs at
least eps.

3. Space Complexity: /

4. Optimality: Yes, since nodes expand in increasing order of path
costs. In turn BFS is also optimal.

1

2 3

4 5 6 7

8 9

Figure 1: Order of node expansion
using BFS.

Figure 2: Graph taken from the win-
tersemester 2020/2021 demo exam.

Examples 8. The given search problem (see figure ??) involves states
A, B, C, D, and Z. Costs for transitions between nodes are specified
on the edges. Your task is to find a path from the initial state A to the
goal state Z using various search algorithms. The successor function
generates the successors of a node in alphabetical order. If two nodes
in the open list (fringe) of the search have the same sorting, then the
alphabet determines their order (A first, Z last).

For Uniform-Cost search indicate the path the search would find and
at each step provide the fringe, the list of nodes yet to be visited, in



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 3

the relevant sorting. Note that nodes may appear multiple times in
the fringe if multiple paths lead to them.

Solution: In our case the path A ⇒ B ⇒ C ⇒ Z will be our solu-
tion. Concerning the fringe we have:

1. Step 1: (B,10), (D, 30) and (Z, 50).

2. Step 2: (C,30), (D, 30), (Z, 45) and (Z,50).

3. Step 3: (D,30), (D,30), (Z,40), (Z,45) and (Z, 50).

4. Step 4: (D,30), (Z,40), (Z,45), (Z, 50) and (Z, 60).

5. Step 5: (Z,40), (Z,45), (Z, 50) and (Z, 60).

6. Step 6: (Z,45), (Z, 50) and (Z, 60).

Depth-First Search

Definition 9 (Depth-First Search). Depth-First search starts at the tree
root and explores the tree as far as possible along one branch before
going back step-wise and exploring alternative branches.

1

2 7

3 6 8 9

4 5

Figure 3: Order of node expansion
using DFS.

Figure 4: Graph taken from the win-
tersemester 2022/2023 demo exam.

1. Completeness: No, fails in infinite-depth search spaces and spaces
with loops. Can be modified to be complete by avoiding repeated
states and limit depth.

2. Time Complexity: Explores each branch until max depth m, i.e.
O(bm). Terrible if m > d (depth of goal node), but may be good in
dense settings

3. Space Complexity: Only a branch and their unexpanded siblings
have to be stored. Therefore linear complexity, i.e. O(b · m)

4. Optimality: No, londer solutions may be found before shorter
solutions. Solution could be more expensive then the optimal one.

Examples 10. Given the graph (see figure ??). In what order would
the nodes be exapanded give we started DFS in the tree root.

Solution: In our case the path 8 ⇒ 3 ⇒ 1 ⇒ 6 ⇒ 4 ⇒ 7 ⇒ 10 ⇒
14 ⇒ 13 will be our solution.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 4

Depth-limited Search

Definition 11 (Depth-limited Search). The depth within the search is
limited to l. Nodes with depth d > l are not considered.

1. Completeness: No.

2. Time Complexity: O(bl)

3. Space Complexity:O(b × m)

4. Optimality: No, see DFS.

Iterative Deepening Search

Definition 12 (Iterative Deepening Search). Similiar to Depth-limited
Search, but increase l after each failed search, i.e. l = 1, 2, 3, . . .

1. Completeness: Yes.

2. Time Complexity: first levels have to be search d times ⇒ d · b +

(d − 1)b2 + . . . + 1 · bd =
d
∑

i=1
(d − i) · bi

3. Space Complexity:Linear complexity O(b · m)

4. Optimality: Yes, the shortest path is found.

Examples 13. We now want to find a path from Node 8 to Node 7 (
see figure ??) using Iterative Deepening Depth-First Search (IDDFS).
Specify the path the search would find, and at each step of the search,
indicate which nodes were expanded in what order. Solution:

1. Step 1: 8

2. Step 2: 8, 3, 10

3. Step 3: 8, 3, 1, 6, 10, 14

4. Step 4: 8, 3, 1, 6, 4, 7

Based on the implementation Iterative Deepening Search either
breaks here or finishes the step.

Bidirectional Search

Definition 14 (Bidirectional Search). Performs two search strategies
simultaneously, starting with the root and goal state. Stop if node
occurs in both searches. Bidirectional search reduces the complexity
b

d
2 + b

d
2 << bd. However it is only applicable if actions can be

reversed and if we choose to do DFS bidirectional search, the search
pathes may not meet.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 5

1. Completeness: Yes.

2. Time Complexity: first levels have to be search d times ⇒ d · b +

(d − 1)b2 + . . . + 1 · bd =
d
∑

i=1
(d − i) · bi

3. Space Complexity:Linear complexity O(b · m)

4. Optimality: Yes, the shortest path is found.

Informed Tree Search Strategies

The problem with uninformed search that the kind of search strate-
gies are ineffiecient, so how do we improve perfomance? What about
giving the algorithm ’hints’ about desirability of different states? We
could, for example, give the straight-line distance for approximation
of the remaining travel distance. Those ’hints’ are called heuristics.

Definition 15 (Heuristics). A heuristic h informally denotes a rule of
thumb, i.e. a rule that may be helpful in solving the problem. In tree
search, a heuristic denotes a function h that estimates the remaining
costs to reach the goal. Note: Heuristics can also go wrong!

Greedy Best-first search

Greedy Best-first search uses a heuristics h to evaluate every node
in the fringe by assigning them a cost. Afterwards the node with the
lowest cost is expanded.

1. Completeness: No, we can get stuck in loops. It is complete in a
finite state space when we make sure to avoid repeating states.

2. Time Complexity: Worst Case O(bm), same as DFS, but can be
improved by using good heuristics.

3. Space Complexity: has to keep all nodes in memory, worst case
O(bm).

4. Optimality: No, since the solution depends on the heuristics.

A* Search

A* search is built on Greedy Best-first search. It tries to minimize not
only the estimated cost h(n) but also the true costs so far g(n). We try
to avoid expanding paths that are already expensive and evaluate the
complete path cost and not only the remaing costs.

f(n) = g(n) + h(n)



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 6

1. Completeness: Yes. Exception: If there infinitely many nodes with
f(n) ≤ f(G).

2. Time Complexity: It can be shown that the number of nodes
grows exponentionally unless the error of the heuristics h(n) is
bounded by the logarithm of the value of the actual path cost h*(n)
i.e.

| h(n) - h*(n)| ≤ O(logh ∗ (n))

3. Space Complexity: has to keep all nodes in memory.

4. Optimality: Depends on the heuristic.

Local search algorithms

Applying the (un)informed search strategies to real world problems
quickly shows us their limitations. When dealing with much larger
search spaces ( <10100 states) those types of algorithms have shown to
prodoce unsatisfyable results. In addition, if we face problem where
path is not the goal (e.g. optimization problems) those types of search
strategies aren’t of any help.

Definition 16 (Optimization problems). An optimization problem
is one where all states/nodes can be a solution (to different degrees)
but the target is to find a state that optimizes (min or max) the solu-
tion according to an objective function. There is no explicit goal state
and also no path cost.

Definition 17 (Objective/Evaluation function). An objective function
tells us how good a state is, also in comparison to other states. Its
value is either minimized or maximized depending on the optimiza-
tion problem.

Local search algorithms (or Iterative Improvement Methods)

Local search algorithms are a class of algorithms that traverse only a
single state rather than saving multiple paths in memory. It modifies
its state iterative, trying to improve a criteria. In many optimization
problems the sequence of actions and costs are irrelevant.
Advantages:

1. Uses a very little/constant amount of memory

2. Find a reasonably solution in very large state

Disadvantages:

1. No guarantees for completeness or optimality



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 7

Hill climbing search / Greedy local search

Hill climbing search expands every neighbor and then moves to
the one with the highest evaluation. It does this until we reach a
maximum(evaluation goes down.)
Problem - Local optima:

1. The algorithm will stop as soon as it reaches a maxima

2. But this maxima does not to have to be global(plateau, ridge or
shoulders)

Solution - Local optima:

1. Random Restart Hill Climbing: Different initial positions result
in differnt local optima. Make several iterations with different
starting positions.

2. Stochastic Hill Climbing: Select the successor node randomly.
Better nodes have a higher probability of being selected.

Problem - Ridge Problem:

1. Every neighbor state appears to be downhill.

2. The search space has an uphill, the neighbors not.

Gradient Descent

When we use Gradien Descent the states in the search space are
represented a locatons with a heuristic value as elevation. The goalis
now to find the global optimum(local search).

Definition 18 (Gradient). A gradient is a derivative of a function that
has more than one input variable. Known as the slope of a function
in mathematical terms, the gradient simply measures the chane in all
weights with regard to the change in error.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 8

Gradient descent can be described as Hill-climbing in a continuos
state space. However, instead of climbing up a hill we hike down to
the bottom of the valley in order to minimize the cost-function J(Θ).
It works well in smooth spaces, poorly in rough.

Definition 19 (Learning Rate). The learning rate is a hyperparameter,
controlling how quickly the model is adapted to the problem.

Smaller learning rate:

1. Smaller changes, requires more training epochs

Larger learning rate:

1. More rapid changes, needing fewer epochs

2. Can converge to a local optima or not at all

Beam search

The main idea of beam search is to expand the nodes we keep track
when using local search (like Hill-climbing). We instead keep track of
k states rather than just one (k is called the beam size).

At each iteration, all the successors of all k states are generated and
we then select the k best successors from the complete list and repeat.

Simulated Annealing

Here we use conventional hill-climbing style techniques, but occa-
sionally take a step in a direction other than that in which there is
improvement(like downhill moves, away from the solution). As time
passes, the probability that a downhill step is taken is decreased. We
model this by using a ’temperature’.

Definition 20 (Temperature). The temperature is a hyperparameter,
controlling how frequently we allow "bad moves" to escape local
optima. Usually the temperature decays exponentionally over the
process. If lowered slowly enough, we converge to a global optimum.
This however can unfortunately take a very long time.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 9

Adversial Search

Adversial search is search, where one examines the problem that
arises when we try to plan ahead of the world and other players are
planning against us or have conflicting goals to ours while sharing
the same search space. It is used to model games as search problems,
here games are presented as game trees. Each player has to consider
the actions of the other players and the effect of their actions on their
perfomance.
Formalization of the problem:

1. Initial state: Specifies how the game is set up at the start.

2. Player(s): Specifies which players turn it is.

3. Action(s): Returns a set of legal moves in the state s.

4. Result(s, a): Transition model, specifies the resulting state s’ doing
a in state s.

5. Terminal(s): Tests if the state s fulfills the goal/terminal con-
straints.

6. Utility(s, p): The utility function returns a numeric value for a
terminal state s from the perspective player p.

To solve games, we build so called game trees. Differently to search
trees, game trees are arranged in level that correspond to players. The
root node is always the active/current player, the lead node are called
terminal. Each terminal node has a utility values which corresponds
to the outcome of the game.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 10

Minimax Algorithm

We build a game tree - where the nodes represent the states of the
game and edges the moves made by the players in the game. The
players are. . .

1. MIN: Decrease the chances of MAX to win the games. (Opponent)

2. MAX: Increases his chances of winning the game.

Both play the game alternating turns and following the above strat-
egy.

• Completeness: Yes, if the tree is finite.

• Time Complexity: O(bm)

• Space Complexity: O(b · m)

• Optimality: Yes, assuming an optimal opponent.

However, the main problem of game trees is that they can be massive
and simply way to big to traverse in full.
Solution: Instead of traversing the full tree, we limit the depth. We
do that by pruning the tree. We cut back the tree by ignoring un-
wanted positions of a search tree which make no difference to its
final result and thereby only slow down the algorithm.

Alpha-Beta Pruning

A modified, optimized version of the Minimax algorithm. It uses
pruning to reduce the amount of exploration without losing the
correctness of Minimax.
Alpha-Beta Pruning is based on two parameters:

1. Alpha: The best(highest-value) choice we have found so far at any
point along the path of Maximizer to the root. The inital value of
alpha is −∞.

2. Beta: The best(lowest-value) choice we have found so far at any
point along the path of Minimizer to the root. The initial value of
beta is ∞.

The key difference to minimax is that the MAX player will only
update the value of alpha and the MIN player will only update the
value of beta. While backtracking the tree, the node values will be
passed to upper nodes instead of values of alpha and beta. We will
only pass alpha and beta to the child nodes.



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 11

Constraint Satisfaction Problems

What if solutions are described by a number of constraints that the
state must satisfy? For problems like this we can use constraint satis-
faction.

Definition 21 (constraint satisfaction). Constraint satisfaction is
a technique where a problem is solved when its solution satisfies
certains or rules of the problem.

Components are:

1. A State, defined by variables Xi with d values from domain Di.

2. A Goal test, defined as a set of constraints c specifying allowable
combinations of values for subsets of variables.

Solving Constraint Satisfaction Problems requires

1. A state space.

2. The notion of the solution.

A state in state-space it not a "blackbox" anymore (as in standard
search) but defined by assigning values to some or all variables such
as

X1 = v1, X2 = v2

Can be done in three ways:

1. Consistent/Legal Assignment: An assignment which does not
violate an constraint or rules.

2. Complete assignment: An assignment where every variable is
assigned with a values and the solution to the CSP remains consis-
tent.

3. Partial assignment: An assignment which assigns values to some
of the variables only.

Since we do not care about the path to a solution and solutions are
described by constraints, we can do better than search trees but still
maintain a data structure. This structure is the constraint graph. In a
constraint graph every variable is represented by a node and every
edge indicates a constraint between them.

Naive Search

One way to solve CSPs is to simply ’search’ for a solution. We suc-
cessively assign values to a variable, check all constraints and if a



algorithmen für einführung in die künstliche intelligenz - wise 2023/2024 12

constraint is violated we backtrack. We do this until all variables
have assigned values. We do this by mapping the CSPs into a search
problem. The nodes are the assignments of values to a subset of the
variables, the neighbors of a node are nodes in which values are as-
signed to one additional variable. As a start node we take an empty
assignment and as a goal node is a node which assigns a value to
each variable and satisfies all constraints.
Complexity of Naive Search:
We have n variables, so all solutions are at depth n in the search tree.
All variables have v possible values. At level 1 we have n · v possible
assignments, since we can choose one of n variables and one of v
values for it. At level 2 we have (n − 1) · v possible assignments for
each previously unassigned variable, since we can choose one of
the remaing n − 1 variables and on the v values for it. In general:
branching factor at depth l: (n − l + 1) · v. Therefore the search tree
has n!vn leaves.


