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1 Introduction to Quantum Information
Science

What is Quantum Information?

• Quantum Information is that kind of information, which is carried by quantum
systems from the preparation device to the measuring apparatus in a quantum
mechanical experiment.

What is information in a classical sense?

• The amount of knowledge we gain after learning the answer to a probabilistic
question.

• Consider a fair coin. You’ve no information about the outcome of the next flip
and have to make a random guess. If someone were to tell you the outcome
of the next flip, you would gain one bit of information(Since 0,1 represents
Heads, Tails.

• What if we have a biased coin where tails is more likely than heads? Learning
Tails as an outcome surprises you less. You learn less, but how much less?

• Shannon Binary Entropy: h(p) = -p·log(p)-(1-p)·log(1-p)
What is a measure of Quantum Information?

• Can we have an analogous measure in Quantum Information as in the classical one,
when we no longer have just classical bits, light switches, coins, etc.?
The physical notion of the qubit is straightforward (once you know quantum theory),
however, here we want to understand the information notion of a qubit, as in
Shannon sense.
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Classically, we qualified information by the amount of knowledge we gain after
learning the answer to a probabilistic question. How can we reason about the
knowledge of a quantum state?
Answering this question in depth will be the primary goal of this course. In quantum
physics we meet a few very important phenomena, which are either negligible or
entirely absent in the classical limit(e.g. superposition). As a consequence, we shall
not expect that classical notions in information theory can be just directly adopted
to the quantum one.

1.1 Contextuality

• imagine a box with three holes (picture below)

• we can only look through two holes at the same time
• we look through every possible combination of the holes and notate the results
• every time we look through the hole, we can see a light flashing in exactly one hole

while the other side remains dark(+ = light, - = dark).
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What can we learn from these correlations?

• If such a scenario would ever occur, it is incompatible with our classical assumptions
of physical properties existing independently of our observations.

• Assumption(classicality): Data can be thought of as originating from a process where
– The first(or nature) generates the full table where every entry is defined.
– Then we decide which pair to uncover.

• In every round k, we observe a random pair:
– P(signs are equal)≥ 1

3 ⇒ Incompatible with the data set!
– Physical quantities do not exist prior to us uncovering their values

1.2 Impossible machines

• Consider the universe in which experiments can give contextual results.
• From the box experiment, we can conclude that measurements do not reveal

pre-existing values.
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2 Linear algebra preliminaries

2.1 Complex linear algebra

2.2 Hilbert Spaces

2.3 Special types of matrices

2.4 Tensor product
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3 Noiseless Quantum Theory

3.1 Quantum States

• Quantum mechanics: tells us that we can associate to a physical system (e.g. room)
a corresponding Hilbert space, known as the state space.

• Postulate (Quantum State): Any closed system can be associated with a Hilbert
Space H. The state of the system is then completely described by its state vector,
|ψ⟩ =

d−1∑︁
i=0

ci|i⟩, with
d−1∑︁
i=0

ci = 1 and |i⟩d−1
i=0 forms a basis of Hd.

• Instead of writing out the complex coefficients c0 and c1, we can also parameterize
an arbitrary superposition with angles α, β, θ ∈ R:

|ψ⟩ = eiα(cosα |0⟩ + eiβ·sinα |1⟩).
• However, the global phase eiα vanishes in all important calculations as eiαe−iα = 1.

|ψ⟩ = cosα |0⟩ + eiβ·sinα |1⟩.
• Alternatively, we can say that the length of the state vector |ψ⟩ is 1.
• This constraint is what makes this complex vector a quantum superposition, as it

corresponds to the sum of probabilities of getting an outcome ’i’.
• This is also very straightforward to see:

⟨ψ |ψ⟩ =
(︁
cos(α)⟨0|+ e−iβ · sin(α)⟨1|

)︁ (︁
cos(α)|0⟩+ eiβ · sin(α)|1⟩

)︁
= cos2(α) ⟨0 | 0⟩⏞ ⏟⏟ ⏞

=1

+eiβ ·sin(α)cos(α) ⟨0 | 1⟩⏞ ⏟⏟ ⏞
=0

+e−iβ ·sin(α)cos(α) ⟨1 | 0⟩⏞ ⏟⏟ ⏞
=0

+sin2(α) ⟨1 | 1⟩⏞ ⏟⏟ ⏞
=1

= cos2(α) + sin2(α) = 1.
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3.2 Quantum measurements

We will now discuss the postulate of QM which is concerned with measurements. The cen-
tral result is that measuring a quantum system in inherently probabilistic, i.e. the outcome
of a measurement is not deterministic and truly random. For any |ψ⟩, the probability of
measuring an outcome vi is given by the absolute-square of the inner product between
the "measurement state"|vi⟩ and the state |ψ⟩:

P(i) = |⟨vi |ψ⟩|2.

The value of the inner product is called the probability amplitude and can be negative
or even complex. Immediately after the measurement, the state |ψ⟩ collapses into a
post-measurement state |ψ′⟩. This post-measurement state is:

|ψ⟩′ = Mi|ψ⟩
Ni

where Mi = |vi⟩⟨vi| and Ni =
√︁
P (i) are the measurement operator and normalizing

constant, respectively. These results are digested in the following postulate.

Postulate (Quantum State): Quantum measurements are described by a collection of
measurement operatorsMi, where i indicated the outcome of the experiment. Let |ψ⟩ be
the state before the measurement, then the state immediately after the measurement is
|ψ′⟩= (Mi|ψ⟩)/Ni where Ni =

√︁
P (i) is for normalization.

More generally, a quantum measurement process is described by a Hermitian matrix, its
eigenvalues and eigenvectors.Given a qudit state |ψ⟩, we say that wemeasure an observable
M (e.g. position, polarization, momentum) on it, and we associate measurement outcomes
to eigenvalues of M, the post-measurement states to eigenvectors, and probabilities to
inner-products.

M |vi⟩ = λi |vi⟩, ∀λi ∈ R asM † =M
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Since {|vi⟩} are eigenvectors, we have ⟨vi | vi⟩ = δi,j (Kronecker-Delta)
Note that:M =

d−1∑︁
i=0

λi|viXvi|

On the other hand, we have a completeness relation:
d−1∑︁
i=0

|viXvi|= I

9



3.3 Evolution of noiseless Quantum States

The evolution of quantum states describes how they pass between states and is described
by linear transformations U, also called gates. Given a quantum state |ψ⟩, one can trans-
form it to another quantum state | ˜︁ψ⟩using a gate. We denote an application of U1, and
then U2 to a state |ψ⟩, as U2U1|ψ⟩.

Postulate (State Evolution): The evolution |ψ⟩ → | ˜︁ψ⟩ of a closed physical system is
described by a linear transformation U †U = In.

3.3.1 Gates

The Identity Gate

This a very simple gate, which doesn’t change anything at all. It preserves the state of the
system as it is - it gives us the identity of the qubit.

I =
(︃
1 0
0 1

)︃

The Pauli Gates

These gates work by changing the direction of the vector |ψ⟩ in either the x, y or z direction.

X =
(︃
0 1
1 0

)︃
, Y =

(︃
0 −i
i 0

)︃
, Z =

(︃
1 0
0 −1

)︃

The Pauli X Gates is the classical NOT Gate, transforming |0⟩ → |1⟩. On the other hand
the Paul Y Gate gets us the same results however instead moving through real space, we
move through imaginary space instead. Lastly, the Pauli Z Gate changes the state of the
qubit along the plane formed by the vector represented by our two states.This means that
no change will occur if we’re fully in one state or the other - only if we’re somewhere
between the two.
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The Hadamard Gate

The Hadamard gate H transform the two basis states |0⟩ and |1⟩ into an equal superposition
of themselves: H = 1√

2

(︃
1 1
1 −1

)︃
.

H|0⟩ = H
(︃
1
0

)︃
= 1√

2

(︃
1
1

)︃
= 1√

2
(|0⟩+ |1⟩) = |+⟩.

H|1⟩ = H
(︃
0
1

)︃
= 1√

2

(︃
1
−1

)︃
= 1√

2
(|0⟩ − |1⟩) = |−⟩.

As these states are extremely important, we often denote them as |+⟩ and |−⟩. In addition,
these two states are again basis states of a Hilbert space as the following holds:

⟨+ |+⟩ = 1, ⟨+ | −⟩ = 0, ⟨− |−⟩ = 1, ⟨− |+⟩ = 0

Common qubit gates and their effect on the Pauli and Hadamard gate:

Gate U U|0⟩ U|1⟩ U|+⟩ U|−⟩

X =
(︃
0 1
1 0

)︃
= HZH |1⟩ |0⟩ |+⟩ |−⟩

Y =
(︃
0 −i
i 0

)︃
i|1⟩ −i|0⟩ −i|−⟩ i|+⟩

Z =
(︃
1 0
0 −1

)︃
|0⟩ −|1⟩ |−⟩ |+⟩

H = 1√
2

(︃
1 1
1 −1

)︃
|+⟩ |−⟩ |0⟩ |1⟩
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3.4 Composite Systems

As in classical computing where we are concerned with more than one bit, QC also works
with more than one qubit. The formalism for this are tensor products between the Hilbert
spaces of the individual qubits. For example two qubits |ψ1⟩ and |ψ2⟩:

|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩)

= α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩

This definition has the effect of applying unitary A to the first and unitary B to the second
qubit in a tensor-multiplied Hilbert space, i.e.:

(A⊗B)(|ψ1⟩ ⊗ |ψ2⟩) = (A|ψ1⟩)⊗ (B|ψ2⟩)

3.4.1 Quantum Entanglement

Definition: Given a quantum state |ψ12⟩ ∈ Cd1 ⊗ Cd2 of a composite system. We call it a
product state if

|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩, where |ψ1⟩ ∈ Cd1 and |ψ2⟩ ∈ Cd2

Otherwise we call it entangled.

3.4.2 Resource Theory of entanglement

Given two quantum states |ψ1⟩ ∈ Cd1 and |ψ2⟩ ∈ Cd2 How do compare them/the entan-
glement contained in them?
Definition: We consider two states to be an identical resource if they can be reached from
each other by local unitary transformations

If U1 ⊗ U2|ψ12⟩ = |ϕ12⟩, we write |ψ12⟩
LU
= |ϕ12⟩
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Since unitaries are reversible, this defines equivalence classes of quantum states under LU
transformations.
E.g. all the product states are in a single equivalence class, the Bell states are equivalent:

I⊗ Z · |ϕ+⟩ =
(︃
1 0
0 1

)︃
⊗
(︃
1 0
0 −1

)︃
· |00⟩+|11⟩√

2

=

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ · 1√
2

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ = 1√
2

⎛⎜⎜⎝
1
0
0
−1

⎞⎟⎟⎠ = |ϕ−⟩ ⇒ |ϕ+⟩ LU
= |ϕ−⟩

Theorem: (Schmidt decomposition) Suppose |ψ12⟩ ∈ Cd1 ⊗ Cd2 is a “pure” state of a
composite system. There exists ONB |i1⟩ for system 1 and a orthonormal basis |i2⟩ for
system 2, such that:

|ψ12⟩ =
k−1∑︁
i=0

√
λi|i1⟩ ⊗ |i2⟩,

where √
λi > 0 are called Schmidt coefficients satisfying ∑︁

λi = 1. (k-1) is called the
Schmidt rank of the state |ψ12⟩. Then it is easy to see, if we sort λi in descending order:
Two bipartite states are LU equivalent iff their Schmidt coefficients coincide.
Example: Express the given state |ψ⟩ ∈ C3 × C3 in its Schmidt decomposition

|ψ⟩ = 1√
6

(︁
|00⟩+ ω|01⟩+ ω2|02⟩ − |20⟩ − ω|21⟩ − ω2|22⟩

)︁
where ω = e2π/3 is a root of unity.
Solution: To represent the state in its Schmidt decomposition we have to transform in
such a way, that in the end it is a product state. As the first step, the |0⟩ and the |2⟩ can be
pulled out.

1√
6

(︁
|0⟩ ⊗

(︁
|0⟩+ ω|1⟩+ ω2|2⟩

)︁
− |2⟩ ⊗

(︁
|0⟩+ ω|1⟩+ ω2|2⟩

)︁)︁
Since |0⟩ and |2⟩ are being multiplied with the same term. We can represent the state as
one tensor product.
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1√
6

(︁
(|0⟩ − |2⟩)⊗

(︁
|0⟩+ ω|1⟩+ ω2|2⟩

)︁)︁
This now almost looks like a product state, however both states have to be normalized.

(|0⟩−|2⟩)√
2

⊗ (|0⟩+ω|1⟩+ω2|2⟩)√
3

We have now represented the state in its Schmidt decomposition. Since the first element
of the ket vectors either takes the value of 0 or 2, we know that these vectors build an
orthonormal basis for that system. The same analogy also applies to the second element
of the ket vectors in |ψ⟩. The Schmidt number for our case would then be 1.

3.4.3 Local operations and classical communication (LOCC)

Local unitary matrices classify 2-qubit quantum states in ∞ equivalence classes(If two
states are equivalent under LU transformation, their Schmidt numbers are the same).
However, one of the tasks in quantum information theory is to distill or concentrate the
entanglement of a given state. Does there exist a broader physically motivated transfor-
mation which could help us rank states with reference to the entanglement in them? For
this there are basically two different protocols:

1. non-local quantum measurements on many copies of the initial state or
2. local operations with possible classical communication(LOCC), performed on only

one copy of the state.
Since local measurements can be performed more easily than non-local ones, the 2nd
option is of special interest. From the point of view of quantum communication LOCC
protocols are important because there is no perfect communication channel in the real-
world. Hence it is natural to ask how much entanglement can be obtained from the
imperfectly entangled states which arise, for example, during the sharing of a perfectly
entangled state between two observers using only LOCC.
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Example: LOCC operations

Physical processes which are involved in LOCC operations become more plausible by
considering the following simple example. Consider two observers, Alice and Bob, who
share the two Bell states:

|ϕ−⟩ = 1√
2
(|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |1⟩B)

|ψ−⟩ = 1√
2
(|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B)

and are provided some classical communications channel (a phone or internet). Alice and
Bob can choose one of the shared states, but the information about which state it is exactly
is lacking. By using LOCC, Alice and Bob can distinguish between these two states. To do
so, Alice has just to measure her qubit and send the measurement outcome to Bob. After
receiving this, Bob has to perform a measurement on his qubit, after which Alice and Bob
would certainly know which state they had. If, for example, Alice would measure 0 and
Bob would measure 1, then they measured |ψ−⟩.

Majorization

An bipartite state |ψ⟩ can transform to a different quantum state |ϕ⟩ using LOCC iff their
Schmidtvalues λψ are majorized by λϕ. But what does majorized mean?

Suppose X = (x1, . . . , xd) and Y = (y1, . . . , yd) are real d-dimensional vectors. Then X is
majorized by Y, written X ≻ Y, if ∀ k in the range 1, . . . , d:

k∑︁
j=1

x↓j ≤
k∑︁
j=1

y↓j

The ↓ indicates that the elements are to be taken in descending order. So, x↓1 is the largest
element in X.
In the two qubit case, the Bell state is majorized by any |ψ1⟩.

λϕ+ =
(︁
1
2 ,

1
2

)︁ and |ψ1⟩ =
(︁
cos2(θ), sin2(θ)

)︁
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For k = 1:

cos2(θ) > 1
2

For k = 1:

cos2(θ) + sin2(Θ) = 2 · 1
2

This means that the Bell state tranforms to every state using LOCC.

Example:

Which of the following states can be converted to the other two using LOCC operations?
Explain your result:

|ψ1⟩ = 1√
6
(|10⟩+

√
2|02⟩+ |21⟩+ |20⟩ − |11⟩)

|ψ2⟩ =
√︂

2
5 |10⟩+

1√
5
|02⟩+

√︂
2
5 |21⟩ |ψ3⟩ = 1√

2
|00⟩+ 1

2 |11⟩+
1
2 |22⟩

Step 1: Transform the states into their Schmidt decomposition.

3.4.4 Three quantum protocols

In this chapter, we study the fundamental, unit quantum communication protocols. These
protocols involve a single sender Alice and a single receiver Bob. The protocols are
ideal and noiseless because we assume that Alice and Bob can exploit perfect classical
communication, perfect quantum communication, and perfect entanglement.
Any information-processing protocol that implements the above map simulates a noiseless
qubit channel. We label the communication resource of a noiseless qubit channel as follows:

[q → q]

where the notation indicates one forward use of a noiseless qubit channel. A noiseless
classical bit channel is any mechanism that implements the following map:

|i⟩⟨i|A ⇒ |i⟩⟨i|B
|i⟩⟨j|A ⇒ 0 for i ̸= j
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Classical communication

One bit of communication is transferred from Alice to Bob, denoted as:

[c → c]

Quantum communication (Elementary Coding)

One bit of communication is transferred from Alice to Bob, denoted as:

[q → q]

It is also possible to send classical information using a noiseless qubit channel. A simple
protocol for doing so is elementary encoding. This protocol consists of the following steps:

1. Alice prepares either |0⟩ or |1⟩, depending on the classical bit that she would like to
send.

2. She transmits this state over the noiseless qubit channel, and Bob receives the qubit.
3. Bob performs a measurement in the computational basis to determine the classical

bit that Alice transmitted.
Elementary coding succeeds without error because Bob’s measurement can always dis-
tinguished the classical states |0⟩ and |1⟩. The following resource inequality applies to
elementary coding:

[q → q] ≥ [c → c]

Shared entanglement (Entanglement Distribution)

The entanglement distribution protocol is the most basic of the three unit protocols. It
exploits one use of a noiseless qubit channel to establish one shared noiseless ebit. It
consists of the following two steps:

1. Alice prepares a Bell state locally in her laboratory. She prepares two qubits in the
state |0⟩A|0⟩′A, where we label the first qubit as A and the second qubit A’. She
performs a Hadamard gate on the qubit A to produce the following state:

17



(︂
|0⟩A+|1⟩A√

2
|0⟩A′

)︂
.

She then performs a CNOT gate with qubit A as the source qubit and qubit A’ as the
target qubit. The state becomes the following Bell state:

|ϕ+⟩AA′ =
(︂
|00⟩AA′+|11⟩AA′√

2

)︂
1. She sends the qubit A’ to Bob with one use of a noiseless qubit channel. Alice and

Bob then share the ebit |ϕ+⟩AB.
The following resource inequality quantifies the non-local resources consumed or genera-
ted in the above protocol:

[q → q] ≥ [qq]

where [q ⇒ q] denotes one forward use of a noiseless qubit channel and [qq] denotes
a shared, noiseless ebit. The meaning of the resource inequality is that there exists as
protocol that consumes the resource on the left in order to generate the resource on the
right. The best analogy is to think of a resource inequality as a "chemical reactionlike
formula, where the protocol is like a chemical reaction that transforms one resource into
another.

Superdense coding

We now outline a protocol named super-dense coding. It is named as such because it has
the striking property that noiseless entanglement can double the classical communication
ability of a noiseless qubit channel. It consists of three steps:

1. Suppose that Alice and Bob share an ebit |ϕ+⟩AB. Alice applies one of the four
unitary operations I, X, Z, XZ to her share of the above state. The state becomes one
of the following four Bell states (up to a global phase), depending on the message
that Alice chooses:

|ϕ+⟩AB′ , |ϕ−⟩AB′ , |ψ+⟩AB′ , |ψ−⟩AB′

2. She transmits her qubit to Bob with one use of the noiseless qubit channel.
3. Bob performs a Bell measurement ( a measurement in the basis

{|ϕ+⟩AB′ , |ϕ−⟩AB′ |ψ+⟩AB′ , |ψ−⟩AB′}) to distinguish the four states perfectly - he can
distinguish the states because they are all orthogonal to each other.
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Thus, Alice can transmit two classical bits (corresponding to the four messages) if she
shares a noiseless ebit with Bob and uses a noiseless qubit channel. The super-dense
coding protocol realizes the following resource inequality:

[qq] + [q → q] ≥ 2[c → c]

Example: Consider, Alice and Bob share the maximally entangled state, |ψ+⟩A3B ∈ C2×C2

and Alice, in addition, in her lab has a state |ϕ⟩A1A2 =cosθ|00⟩A1A2+sinθ|11⟩A1A2 ∈ C4, θ ∈
[0, π4 ].
To sum up, before they start the protocol, the state vector of the entire system looks as
follows:

|ψ⟩ = |ϕ⟩A1A2 ⊗ |ψ+⟩A3B ∈ C8
A ⊗ C2

B.

Hence in total, Alice possesses three qubits.
a) Alice acts on the state |ψ⟩ with the operator (IA1 ⊗HA2 ⊗ IA3) (IA1 ⊗ CNOTA2A3).
Calculate the action on this operator on the state |ψ⟩

Solution:

(IA1 ⊗ CNOTA2A3) (|ϕ⟩A1A2 ⊗ |ψ+⟩A3B)

Firstly, let’s write out the tensor product on the right side.

(IA1 ⊗ CNOTA2A3)
1√
2
(cosθ|00⟩A1A2(|01⟩+ |10⟩)A3B + sinθ|11⟩A1A2(|01⟩+ |10⟩)A3B)

We now apply the identity matrix I on qubit A1, however since it’s the identity it doesn’t
change anything. This means we can go straight to applying the CNOT gate on the qubits
A2 and A3. The CNOT gate always operates on two qubits, flipping the value of second
qubit (the target qubit) if the value of the first qubit(control qubit) is equal to 1. In our
context this means that we have to check the value of the qubit A2 and if its 1, we flip the
value of qubit A3. This transforms our state to:

1√
2
(cosθ|00⟩A1A2(|01⟩+ |10⟩)A3B + sinθ|11⟩A1A2(|11⟩+ |00⟩)A3B)
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Before applying the second part of the operator, lets simplify our current result. To do
this we factor in the 1√

2
term. Which leaves us with:

cosθ|00⟩A1A2

1√
2
(|01⟩+ |10⟩)A3B⏞ ⏟⏟ ⏞

=|ψ+⟩

+sinθ|11⟩A1A2

1√
2
(|11⟩+ |00⟩)A3B⏞ ⏟⏟ ⏞

=|ϕ+⟩

Now lets apply the second part of the operator:

(IA1 ⊗HA2 ⊗ IA3) (cosθ|00⟩A1A2 |ψ+⟩+ sinθ|11⟩A1A2 |ϕ+⟩)

Applying the identity again means the qubits A1 and A3 remain untouched. So we only
need to apply the Hadamard gate on the qubit A2. The Hadamard gate transform the ket
vector |0⟩ to |+⟩ and the ket vector |1⟩ to |−⟩. This then leads us to the following result:

cosθ|0+⟩A1A2 |ψ+⟩+ sinθ|1−⟩A1A2 |ϕ+⟩

b) Suppose now Alice makes a measurement on the second and third qubit of the state
obtained in (a), in the computational basis. Write down what the corresponding state
would be for the subsystem A1 and B in each case.
Solution: Firstly we write out the state from above. With |+⟩ being equal 1√

2
(|0⟩+ |1⟩)

and |−⟩ being equal 1√
2
(|0⟩ − |1⟩). This leaves us with:

cosθ 1√
2
(|0001⟩+ |0101⟩+ |0010⟩+ |0110⟩) + sinθ 1√

2
(|1000⟩ − |1100⟩ − |1011⟩ − |1111⟩)

The first element of the ket vectors comes from the ket vector |0+⟩, the second element
represents the different values that the ket vector |+⟩ or |−⟩ takes and lastly the last two
element come from the respective bell state. If we now look at the outcome for the qubits
A2 and A3 we can see that we have 4 different combinations.
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Outcome Probability A2A3 A1B
00 1

4 |00⟩ cosθ|01⟩+sinθ|10⟩
01 1

4 |01⟩ cosθ|00⟩+sinθ|11⟩
10 1

4 |10⟩ cosθ|01⟩−sinθ|10⟩
11 1

4 |11⟩ cosθ|00⟩−sinθ|11⟩

c)Alice now communicates the result of her measurement outcomes to Bob so that he can
‘correct’ the final state accordingly. Write down the corrections which Bob has to make
once he receives information about Alice’s outcome.
Solution: We now need to compare our state |ϕ⟩ to the state in the A1B column and look
if we need to make any transformations to Bob’s qubit B to change the state to the state
|ϕ⟩. For example, in the first row Bob’s qubit needs to be flipped to create the state |ϕ⟩,
this why we need to apply a Pauli-X gate. In the second row no changes are neccessary.
However, in the third row we encounter a similiar case to the one from the first row. But
this time we also need to flip - to +. This is the job of the Pauli-Z gate. Lastly, in the last
row we only need the Pauli-Z gate.

Outcome Probability A2A3 A1B Corrections
00 1

4 |00⟩ cosθ|01⟩+sinθ|10⟩ X
01 1

4 |01⟩ cosθ|00⟩+sinθ|11⟩ I

10 1
4 |10⟩ cosθ|01⟩−sinθ|10⟩ ZX

11 1
4 |11⟩ cosθ|00⟩−sinθ|11⟩ Z

3.4.5 Multipartite entanglement

The next step is to look at entanglement in N-qubits.
Defintion: A multipartite state |ψ⟩ ∈ H⊗N is full separable if it can be written as
|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩.

It is called biseparable if some of its grouped parties are entangled, e.g.
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|ψ⟩12|3...n = |ψ⟩12 ⊗ |ψ⟩3...N .

If the state is not biseparable across any bipartition we say that it is genuine multipartite
entangled.

3.4.6 Stochastic LOCC

When discussing LOCC, |ψ⟩ LOCC−−→ |ϕ⟩, we requested that the transformation happens with
probability 1. Let us now drop this requirement and ask that a state |ψ⟩ can be transformed
to the state |ϕ⟩ with nonzero success probability. We can use this tool to learn more about
allowed LOCC. Moreover SLOCC are characterized much easier than LOCC.
Theorem: |ψ⟩ SLOCC−−−→ |ϕ⟩, where |ψ⟩, |ϕ⟩ ∈ H⊗N

d if there exists A1, A2, . . . , An ∈ GL(d,C)
, such thatA1 ⊗ A2 ⊗ · · · ⊗ AN |ψ⟩ = |ϕ⟩. If we request all A′

is to be invertible, than we
are defining new equivalence classes.

E.g. In d-dimensional bipartite case, |ϕ+d ⟩ = 1√
d

d−1∑︁
i=0

|ii⟩ LOCC−−→ |ψd12⟩ ⇒ |ϕ+d ⟩
SLOCC−−−→ |ψd12⟩ And

as long |ψd12⟩ has the same Schmidt rank, we get equivalence.

|ϕ+d ⟩
SLOCC
= |ψd12⟩

3.4.7 Monogamy of entanglement

So how does entanglement scale in multiparticle systems? E.g. If we have three qubit
systems can all three be maximally entangled?
In what follows, we argue that entanglement cannot be freely shared between arbitrarily
many parties ⇒ ”Monogamy” of Quantum Entanglement.
Consider a three qubit state |ψ⟩ ∈ (C2)⊗3. Show that if Alice and Bob exhibit perfect
correlations in the computational and Hadamar bases, then Charlie’s state must be in the
tensor product with A’s and B’s state.
As a starting point, let us express a general three qubit state:

|ψ⟩ =
∑︁
i,j,k

ci,j,k|i, j, k⟩,
∑︁
i,j,k

|ci,j,k|2 = 1.
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Since A and B shall exhibit perfect correlations in the computational basis, the outcome
|010⟩, |011⟩, |100⟩ and |100⟩ shall never occur.

3.4.8 The Bloch Sphere

The Bloch sphere is a geometrical representation of the pure state space of two-level
quantum mechanical system (qubit).

It’s a handy device for visualizing these quantum states. Any sphere is a three dimensional
object and therefore has an X, Y and Z axis. Even more important is that the surface of
the Bloch sphere is the set of all pure quantum states, and the interior is the set of all
mixed quantum states. As typical in geometry, we take the sphere to have a radius of 1
(to simplify the math). There is a unit vector or Bloch vector - the quantum state if the
system - that moves around the inside of the sphere, either as the wave-function evolves
over time or due to a measurement.
To better understand the Bloch sphere, we have to know a few things about quantum spin.
Firstly, a spin or qubit measurement has two outcomes (eigenstates), which we call |0⟩
and |1⟩ These form the north and south poles (so to speak) of the sphere. This polar axis
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is canonically defined to be the Z-axis.A vital point here is that antipodal vectors, such as
|0⟩ and |1⟩ are orthogonal states. Normally in geometry, orthogonal means two vectors (or
even just lines) with a 90° angle, but in the Bloch sphere we define orthogonal to mean
two vectors with a 180° angle.
Since the vectors |0⟩ and |1⟩ are defined as:

|Z+⟩ = |0⟩ =
(︃
1
0

)︃
and |Z−⟩ = |1⟩ =

(︃
0
1

)︃

One can easily see that these vectors are orthogonal. Secondly, we use these two eigen-
states as an eigenbasis that spans all possible states of our system. All other states are
superpositions of these basis states.
In particular, we define the X-axis as:

|X+⟩ = |+⟩ = 1√
2

(︃
1
1

)︃
and |X−⟩ = |−⟩ = 1√

2

(︃
1
−1

)︃

and the Y-axis as:

|Y+⟩ = |+i⟩ = 1√
2

(︃
1
i

)︃
and |Y−⟩ = |−i⟩ = 1√

2

(︃
1
−i

)︃
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4 Noisy Quantum Theory

4.1 Noisy Quantum States

So far we only talked about pure quantum states. In a pure quantum state, the system is in
a well-defined state described by a single wavefunction or ket vector. However this doesn’t
transfer very well to real world applications. Since we often don’t know exactly which state
our system is in. It could be in one of several possible states with certain probabilities. In
order to describe a system like this we use mixed quantum states.A mixed quantum state
is a way of describing this uncertainty or lack of knowledge. Instead of having a single ket
vector, we have a mixture of ket vectors, each with its own probability of occurring. Note
that in the former case, the vector moves smoothly and, per the wave-function, completely
predictably. It is the latter case that gives quantum physicists the fits — measurement
causes the vector to jump to an eigenstate, the dreaded “collapse” of the wave-function.

An ensemble of quantum states can then be represents as:

E = {pX(x), |ψx⟩}x∈X
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Performing a measurement on the ensemble E

Let Πj be the element of this measurement and ∑︁
j∈J

Πj = 1 and suppose the state was
|ψx⟩ when we a took the measurement. Then the conditional probability of obtaining an
outcome j, when measuring |ϕx⟩ is pJ |X(j|x) = ⟨ψx|Πj |ψx⟩.
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5 Entropy & Information
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